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The solution of dynamic problems modeled by either finite elements, 
finite differences or boundary discretization approaches ultimately 
reduces to a system of discrete dynamic equations in the form 

These equations can be solved by either direct integration approaches, 
modal analysis, Laplace transforms, method of characteristics, etc. 
of the most attractive approaches involves the direct numerical 
integration of these equations. 
proper time step to achieve both a stable and accurate solution. 

classical integrators used in the solution of dynamical systems with 
various stiffness characteristics. 
central difference technique I l l ,  Newmark's technique Ill, Etunge-Kutta 
methods [21, Gear*s method [21  are compared. The performance of these 
algorithms on systems with various stiffness ratios is of particular 
importance. 

methods studied. 
time steps required for an accurate solution far exceed the explicit 
techniques. 
both from the standpoints of computational efficiency and accuracy. 

to the extreme amounts of computation time required for each time step 
[l]. This conclusion, while true for problems in which the stiffness 
ratio is near unity, breaks down for stiff problems. 
demonstrate that the Runge-Kutta-Gill method (a fourth order method) is 
computationally superior to the second order methods for any degree of 
stiffness. Gear's method (of various orders) is also compared. These 
methods perform well for some problems and not for others. 

The results demonstrate that the direct integration of dynamical 
systems is best approached using Runge-Kutta methods with orders chosen 
based on the stiffness of the problem. 
techniques for Finite Element spatial discretizations is discussed. 

One 

The major problem is the choice of a 

The purpose of this paper is to examine the performance of several 

Specifically, the second order 

The results demonstrate that #ewmark*s technique is the worst of the 
Even though the method is unconditionally stable, the 

The second order central difference approach is preferable 

Historically, high order Etunge-Kutta methods have been abandoned due 

The results 

Implementation of these 
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Dynamic solid mechanics problems are routinely solved by 

spatially discretizing the continuum using either finite 

elements or finite difference approximations. The result is a 

dynamical system of discrete coupled vibration equations (which 

may, in fact be nonlinear, if the governing continuum equations 

are nonlinear). To solve the system, one must either employ 

modal techniques or direct time integration techniques. This 

study addresses the direct time integration approach. 

Two prototype dynamical systems were studied in this 

work: a stiff, undamped system, and a stiff, damped system 

(with sub-critical damping). The specific undamped problem 

studied was 

2 2 Y = - 0 2 Y  + a  ( 1 - R ) Y 2  
1 0 1  0 

2 2 2  i! = - R  0 y 
2 0 

0 = 21T 
0 

with initial conditions 

y2 (t = O) 
Y1 (t = 0) = 0 = 
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The specific underdamped problem studied was 

0 = 211 
0 

with initial conditions 

Y1 (t = 0) = 0 = Y2 (t 

0 e 
Y 1 ( t = O ) = V  ; Y 

1 2 

= 0) 

( 4 )  
(t = 0) = v 

2 

These equations were solved using the six integrators discussed 

below. 

Many time integrators have been employed for solving 

systems like the above examples. Relatively little has been 

done, however, to truly investigate the convergence and per- 

formance o f  these integrators for practical examples. Much 

theoretical work has been done for trivial uncoupled systems, 

however, the need is f o r  practical guidelines f o r  real situa- 

tions. It is important to recognize that the problem of sta- 

bility as well as accuracy plays a role in convergence. It is 

not, however, the sole important parameter for stiff systems 

(as is usually assumed). As will be demonstrated, uncondition- 

ally stable integrators often require smaller step size and 
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longer computation times than conditionally stable integrators 

of the same order. 

The first integrator used is the second order central 

difference operator. For  undamped systems it is fully ex- 

plicit; for damped systems it can be either semi-implicit or  

fully explicit depending on the choice made for the velocity 

term and whether the system is linear o r  nonlinear. For all 

vibration problems it is conditionally stable. Mathematical 

details can be found in [l]. 

The second integrator used is Newmark's integrator. It is 

a fully implicit second order method. For linear systems 

(damped or  undamped) it is unconditionally stable. For  non- 

linear systems it appears t o  be conditionally stable from 

numerical experiments, however, no analytical proof o r  range of 

stability has been determined. The mathematical formulation 

can be found in [2]. 

The third, fourth and sixth techniques are all integrators 

from the class attributed to Gear and Hindmarsh. These tech- 

niques belong to a family of fully implicit integrators which 

have excellent stability properties f o r  many types of stiff 

problems. For  this study, the second order, fourth order and 

sixth order integrators were chosen (i-e., the second order is 

method three, the fourth order is method four and the sixth 

order is method six). All of these integrators are uncondi- 

tionally stable for the linear vibration systems (damped o r  
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undamped) and are conditionally stable for the nonlinear 

problems. The mathematical formulation of these methods is 

given in [l]. 

The fifth method studied is a fully explicit fourth order 

Runge-Kutta technique attributed to Gill. It is conditionally 

stable f o r  all systems but possesses extremely good convergence 

properties. The mathematical details of this method is given 

in [l]. 

To investigate the convergence properties, the maximum 

time step for convergence to 3% accuracy (compared with the 

analytic solution) was calculated numerically. The results are 

shown in Figure 1 (for the undamped problem) and Figure 2 (for 

the damped problem). In both, the central difference method 

possessed the best convergence properties (i.e., the time step 

required was greater) of all the second order methods. 

Newmark's method was second and the second order Gear-Hindmarsh 

integrator was the worst. Of the two fourth order methods, the 

Runge-Kutta-Gill exhibited better convergence properties than 

the fourth order Gear-Hindmarsh integrator. For most problems, 

the sixth order Gear-Hindmarsh exhibited better convergence 

properties than the lower order methods, however, in the damped 

problem, the Runge-Kutta was better for some stiffness ratios. 

It is also important t o  compare relative computer runtimes 

for the methods as the computer requirements to achieve a given 

accuracy is ultimately the most important factor for solving a 
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given problem. The relative runtimes are shown in Figure 3 

(for the undamped problem) and Figure 4 (for the damped 

problem). The Runge-Kutta-Gill integrator was the most 

efficient for all problems studied. It was followed by the 

sixth order Gear-Hindmarsh, fourth order Gear-Hindmarsh, 

central difference method, Newmark's method, and second order 

Gear-Hindmarsh respectively. These results are somewhat 

contrary to the usual assumptions that implicit integrators 

outperform explicit for problems which do not exhibit fast 

transients. 

The conclusions of this study are that higher order 

integrators show great potential for reducing computer solution 

time for dynamical systems and that implicit integrators may 

not be the most efficient methods for these systems. The role 

of stability is grossly overestimated for problems exhibiting 

significant stiffness (as most real problems do) and large 

errors may occur from the nonconservative use of implicit 

integrators. 
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